
www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1757

Secure API Gateways in Multi-Cloud Architectures:

Performance and Policy Enforcement

Venkata Jyothi Swaroop Chejarla

Independent Researcher, India

Abstract

As enterprise architectures transition to microservices and containerized applications, the use of

multiple cloud providers has become a strategic imperative for agility and availability. However, this

multi-cloud landscape introduces significant challenges in securing and managing API traffic that spans

disparate platforms. This paper evaluates the deployment and performance of secure API gateways

across multi-cloud environments, focusing on three widely adopted platforms: Kong, AWS API

Gateway, and Apigee. The analysis covers authentication mechanisms, rate limiting, input validation,

JWT-based access control, and the enforcement of OpenAPI-defined policies. A performance simulation

involving 10,000 concurrent API requests across AWS and GCP regions reveals that Kong and Apigee

deliver more consistent response times under load, while AWS API Gateway excels in granular IAM-

based access control. Misconfigurations—including unauthenticated routes, overly permissive policies,

and lack of input validation—were found to cause broken authentication and internal API exposure. To

address these issues, we propose a standardized API policy enforcement framework and advocate

centralized logging through cloud-native SIEM tools like AWS CloudTrail and Google Cloud Logging.

The study concludes that robust and uniform API security is not just a best practice but a necessity in

multi-cloud microservice ecosystems, and it must be embedded into cloud governance strategies from

the outset.

Keywords: API gateway, multi-cloud, Kong, AWS API Gateway, Apigee, JWT, OpenAPI, rate limiting,

input validation, SIEM integration, cloud governance

1. Introduction

With the proliferation of microservices, DevOps pipelines, and hybrid deployments, APIs have become

the de facto interface for enterprise functionality. APIs enable interoperability, modularity, and rapid

iteration—but they also expose organizations to attack surfaces that are difficult to monitor, govern, and

secure across distributed cloud environments. The stakes are particularly high in multi-cloud

architectures, where API traffic flows across heterogeneous infrastructures such as AWS, Google

Cloud Platform (GCP), Azure, and on-premises environments.

API gateways act as the control plane for API traffic. They provide central capabilities such as rate

limiting, access control, input sanitation, authentication, and threat prevention. In a multi-cloud context,

the challenge is not only to implement these capabilities but to do so consistently and securely across

vendors—without introducing latency, policy drift, or management overhead.

This paper investigates the security posture and performance characteristics of three leading API

gateway platforms:

• Kong Gateway (open-source and enterprise)

• AWS API Gateway (native to the AWS ecosystem)

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1758

• Apigee (managed API gateway solution from Google Cloud)

We explore the extent to which these platforms support:

• Standards-based policy enforcement, such as OpenAPI 3.0 specifications and JWT-based

authentication

• Advanced rate limiting and threat protection, including protection against common API-

level attacks (e.g., SQL injection, XSS)

• Policy consistency and logging across cloud environments

The paper is organized as follows: Section 2 reviews related work and prior evaluations of API security

in distributed systems. Section 3 defines the hypotheses driving our evaluation. Section 4 details our

methodology, including deployment topology, traffic simulation, and performance measurement.

Section 5 presents the results. Section 6 offers a security policy framework and analysis of common

misconfigurations. Section 7 concludes with recommendations for integrating secure API governance

into multi-cloud strategies.

2. Literature Review

2.1 Rise of Multi-Cloud and API Proliferation

As enterprises adopt a multi-cloud strategy to avoid vendor lock-in and optimize for regional

availability, API traffic increasingly traverses multiple clouds. According to Flexera's 2021 State of the

Cloud Report, over 92% of enterprises use more than one public cloud provider. This introduces

operational silos, making centralized security enforcement difficult, particularly when using native

gateways provided by different vendors.

2.2 API Gateways and Zero Trust Architectures

API gateways are critical to Zero Trust security models. They serve as enforcement points for least

privilege access, token validation, and anomaly detection. Recent research (e.g., Alshamrani et al.,

2020) has emphasized the importance of integrating gateways into security orchestration pipelines.

However, most existing evaluations focus on single-cloud performance, leaving a gap in

understanding how gateways behave in federated and cross-cloud topologies.

2.3 Security Features: JWT, OpenAPI, and Threat Protection

Industry best practices (OWASP API Top 10, 2019) recommend that APIs implement:

• Authentication using secure tokens (e.g., OAuth2 with JWT)

• Input validation to prevent injection attacks

• Rate limiting and quotas to mitigate abuse

• Schema enforcement using OpenAPI specifications

Some vendors provide out-of-the-box support for these features, while others require additional

configuration or external middleware. The effectiveness of these controls in real-world multi-cloud

scenarios remains under-explored.

2.4 Logging and Observability

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1759

Logging plays a crucial role in detecting misconfigurations and abuse. Cloud-native SIEM solutions

like AWS CloudTrail, GCP Cloud Logging, and Azure Monitor are capable of ingesting API gateway

logs, but policy fragmentation and format discrepancies often hinder correlation across platforms.

Our work builds on prior research by evaluating how well these gateways can enforce uniform security

policies and scale under load in a federated environment.

3. Hypotheses

This study is guided by the following hypotheses, formulated to assess both the security capabilities

and performance efficiency of API gateways across multi-cloud environments:

• H1: Secure API gateways can enforce consistent authentication, rate limiting, and input

validation policies across cloud providers using OpenAPI and JWT standards.

• H2: Under concurrent request loads (≥10,000), Kong and Apigee will demonstrate lower

latency variance and more stable throughput than AWS API Gateway.

• H3: Misconfigured gateways will result in common security failures, including broken

authentication and overexposure of internal APIs.

• H4: Centralized logging through cloud-native SIEM tools enables effective correlation and

auditing of API gateway events across AWS and GCP platforms.

These hypotheses form the basis of our performance benchmarking and misconfiguration analysis in a

federated cloud deployment.

4. Methodology

This section describes the experimental setup for evaluating the selected API gateways in a federated,

production-simulated multi-cloud architecture.

4.1 Platforms Evaluated

The study evaluates three API gateway platforms:

• Kong Gateway v3.0 (Open Source), deployed in containers on AWS EC2 and GCP Compute

Engine.

• AWS API Gateway (REST mode), configured with Lambda backends and IAM authorizers.

• Apigee Edge, deployed via Google Cloud’s managed interface, connected to Cloud Run and

Cloud Functions.

Each gateway was configured to handle:

• OpenAPI 3.0-compliant routes

• OAuth2/JWT authentication

• Input validation schemas

• IP-based rate limiting (per minute)

4.2 Deployment Topology

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1760

The testbed was deployed across AWS (us-east-1) and GCP (us-central1):

• Each gateway exposed identical APIs (GET, POST, PUT endpoints).

• Backends returned simulated payloads (1 KB and 5 KB).

• Cloud load balancers were used to distribute traffic.

• Gateways were instrumented to log to CloudTrail (AWS), GCP Logging, and Prometheus-

Grafana (for Kong).

Figure 1 (to be included) will illustrate the architecture and traffic flow between clients, gateways, and

backend services.

4.3 Security Test Cases

To assess security enforcement and misconfiguration resilience, we conducted the following tests:

Test Type Description

JWT Spoofing Attempts to bypass route authorization using tampered JWT tokens

Policy Drift Gateway evaluated for inconsistencies between documented and active rules

Input Injection Payloads crafted for SQLi and XSS pattern injection

Open Route Discovery Port scans and unauthorized access attempts to internal services

Each test was run with baseline configurations and after hardening based on vendor recommendations.

4.4 Performance Benchmarking

API load testing was performed using k6 and Artillery.io, simulating:

• 10,000 concurrent requests (5k AWS, 5k GCP origin)

• Request rates of 500 to 2,000 requests per second

• Both authenticated and unauthenticated traffic flows

Metrics recorded included:

• Average response time

• 95th percentile latency

• Throughput (requests/sec)

• Error rate (%)

• CPU/memory utilization for Kong container deployments

Each test was repeated three times during off-peak hours to minimize cloud-provider-induced noise.

4.5 Logging and Audit Analysis

We assessed logging consistency and cross-cloud observability by:

• Parsing logs from CloudTrail, Apigee Trace, and Kong (via Prometheus/Elastic)

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1761

• Correlating JWT claims, user IDs, and request origins

• Evaluating export capability to external SIEMs (e.g., Splunk, Azure Sentinel)

Our goal was to validate whether a unified audit trail could be assembled using native cloud tooling—

supporting Hypothesis H4.

5. Results

This section summarizes the findings from our performance benchmarking, security validation, and

logging analysis across Kong, AWS API Gateway, and Apigee in a multi-cloud deployment context.

5.1 Performance Under Load

We tested all three gateways with 10,000 concurrent API requests distributed equally between AWS and

GCP endpoints. The results highlight response time stability, throughput, and failure rates.

Table 5.1 – Performance Metrics under 10,000 Concurrent Requests

Metric Kong Gateway AWS API Gateway Apigee Edge

Avg. Response Time (ms) 118 133 122

95th Percentile Latency (ms) 165 210 172

Throughput (req/sec) 1987 1821 1923

Error Rate (%) 0.2 0.0 0.3

CPU Usage (Kong only, 4 cores) 41% — —

• Kong and Apigee maintained more consistent latency under high load, supporting H2.

• AWS API Gateway offered slightly better request completion accuracy but with higher latency

variability.

• Kong’s open-source nature allowed CPU utilization tracking, demonstrating efficient multi-

core scaling on EC2.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1762

Figure 1: API Gateway Performance – Response Time vs. Throughput illustrates that while Kong

and Apigee maintained lower average latency, Kong achieved the highest throughput under load,

confirming their efficiency in high-traffic multi-cloud environments.

5.2 Security Enforcement and Misconfiguration Testing

Security validation tests confirmed key findings regarding policy application and misconfiguration

resilience.

Table 5.2 – Security Misconfiguration Test Outcomes

Test Case Kong
AWS API

Gateway
Apigee

JWT Spoofing Blocked Yes Yes Yes

Policy Drift Detected No Yes Yes

Input Injection Blocked

(XSS)
Yes Yes Yes

Input Injection Blocked

(SQLi)
Yes No Yes

Open Route Discovery No Yes No

• Kong required more manual effort to harden policies (policy drift, route visibility), while AWS

and Apigee benefited from default protections aligned with IAM and managed OpenAPI

enforcement.

• SQL injection protection was notably weaker on AWS API Gateway, unless paired with AWS

WAF (not enabled in baseline test).

• These findings confirm H1 (when properly configured) and H3 (misconfigurations are common

and impactful).

5.3 Logging and SIEM Integration

Gateway logs were ingested and analyzed across native tools and external log aggregators:

• Kong: Exported logs to Elasticsearch via Fluentd and Grafana dashboards.

• AWS API Gateway: Logged to CloudWatch Logs, integrated with CloudTrail and Athena for

querying.

• Apigee: Delivered logs via Apigee Trace, GCP Logging, and export to BigQuery.

All platforms supported exporting logs to SIEM tools like Splunk or Sentinel with varying degrees of

effort.

Key findings:

• Log consistency across cloud platforms was achievable through OpenTelemetry or

centralized collectors, validating H4.

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1763

• JWT token claims and policy decisions could be traced across all platforms, although Kong

required custom instrumentation.

6. Discussion and Implications

The findings from this study confirm that API gateways are crucial enforcement points for security and

performance in multi-cloud architectures. However, their effectiveness depends heavily on proper

configuration, consistency across cloud platforms, and robust observability mechanisms.

6.1 Performance vs. Control: Platform Trade-offs

While all three platforms—Kong, AWS API Gateway, and Apigee—demonstrated acceptable

performance at scale, the trade-offs between flexibility, integration, and latency are significant.

• Kong offered the best throughput and CPU-level visibility, which is ideal for teams prioritizing

customizability and self-hosting in containerized environments. However, it required more

manual tuning for security policies and logging.

• AWS API Gateway, though slightly slower under load, provided deep integration with AWS

IAM, Lambda, and CloudWatch. It is a strong fit for organizations already embedded in the

AWS ecosystem, especially when used with additional services like AWS WAF.

• Apigee balanced ease of configuration with strong policy management and analytics but

introduced slightly more latency under high throughput, likely due to managed service

abstractions.

These observations support H2 and reinforce that gateway selection must align with organizational

priorities—whether performance, integration, or operational simplicity.

6.2 Misconfiguration as a Leading Risk

Our misconfiguration tests revealed that API security failures often stem from inadequate or

inconsistent policy enforcement, not platform limitations. Examples include:

• Open routes unintentionally left unauthenticated in Kong

• SQL injection vulnerability bypassing AWS Gateway due to missing WAF

• Policy drift between documented OpenAPI specs and actual enforcement

These findings confirm H3, emphasizing the need for automated policy validation, routine audits, and

default-deny configurations to prevent oversight.

6.3 Unified Observability and Governance

While each platform supported logging and traceability, assembling a cohesive, cross-cloud view of

API activity required exporting logs to a common SIEM or observability layer. Tools like

OpenTelemetry, Fluentd, and centralized Elasticsearch/Kibana stacks proved invaluable in this

role.

The ability to trace JWT claims, IP origins, and policy enforcement actions across vendors validates

H4. This underscores the importance of integrating gateway logs into broader cloud governance

frameworks, where anomalies, drift, and abuse can be identified in real time.

6.4 Implications for Microservice Security

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1764

In microservice architectures, where APIs expose internal logic to external traffic, API gateways

become de facto firewalls. They are not merely routing tools but active participants in:

• Enforcing zero trust principles

• Preventing lateral movement through segmentation and scopes

• Protecting workloads from volumetric or injection attacks

This requires security teams to treat API gateways as critical infrastructure—audited, version-

controlled, and monitored like any other access control mechanism.

7. Conclusion and Future Work

As enterprise infrastructure shifts toward distributed, microservice-based architectures spanning

multiple clouds, APIs have become both essential assets and significant attack surfaces. This paper

evaluated the performance, policy enforcement capabilities, and security resilience of three leading API

gateway platforms—Kong, AWS API Gateway, and Apigee—within a federated multi-cloud

deployment.

The results affirm that API gateways can enforce robust security policies (e.g., JWT-based access,

OpenAPI validation, rate limiting) when properly configured. Kong and Apigee demonstrated stronger

performance under load, while AWS API Gateway offered tighter cloud-native integrations with IAM

and logging tools. However, misconfigurations—particularly around open routes, missing input

validation, and policy drift—remained common and impactful, confirming that operational

discipline is as important as platform selection.

Crucially, the ability to centralize API logs across providers using tools like CloudWatch, GCP

Logging, and OpenTelemetry enabled end-to-end visibility and auditability, a foundational requirement

for modern cloud governance.

Future Work

To strengthen multi-cloud API security and observability, we recommend the following avenues for

further research and development:

• Automated policy validation tools that continuously compare OpenAPI specs to active

gateway configurations to prevent drift.

• Cross-cloud policy orchestration layers using GitOps or service mesh integrations for real-

time sync across vendors.

• Native WAF enhancements or integrations for Kong and AWS Gateways to reduce

dependency on external filtering solutions.

• Security benchmarking frameworks that evaluate not just performance, but resistance to

evolving attack techniques like token hijacking, replay attacks, and broken object-level

authorization (BOLA).

• AI-assisted anomaly detection in API telemetry using machine learning models that flag

behavioral deviations in real time.

Ultimately, as APIs continue to scale in complexity and exposure, enterprises must treat API security

governance as a first-class citizen within their broader cloud strategy. Gateways—when properly

http://www.ijbar.org/

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1765

selected, configured, and monitored—can serve as powerful sentinels that enforce this governance at

scale.

References

1. Alshamrani, A., Myneni, S., Chowdhary, A., & Huang, D. (2020). A survey on advanced

persistent threats: Techniques, solutions, challenges, and research opportunities. IEEE

Communications Surveys & Tutorials, 21(2), 1851–1877.

https://doi.org/10.1109/COMST.2019.2910811

2. Talluri Durvasulu, M. B. (2015). Building Your Storage Career: Skills for the Future.

International Journal of Innovative Research in Computer and Communication Engineering,

3(12), 12828-12832. https://doi.org/10.15680/IJIRCCE.2015. 0312161

3. OWASP Foundation. (2019). OWASP API Security Top 10. https://owasp.org/www-project-api-

security/

4. Flexera. (2021). 2021 State of the Cloud Report. https://www.flexera.com/resources

5. Kong Inc. (2021). Kong Gateway Documentation. https://docs.konghq.com/gateway

6. Amazon Web Services. (2021). API Gateway Developer Guide.

https://docs.aws.amazon.com/apigateway

7. Google Cloud. (2021). Apigee Edge Documentation. https://cloud.google.com/apigee/docs

8. Abdou, A., Barrera, D., & van Oorschot, P. C. (2020). API access control for cloud-native

applications. IEEE Security & Privacy, 18(5), 60–68.

https://doi.org/10.1109/MSEC.2020.2993479

9. Munnangi, S. (2022). Decentralizing workflows: Blockchain meets BPM for secure

transactions. International Journal of Intelligent Systems and Applications in Engineering, 9(4),

324–339.

10. Microsoft. (2021). Zero Trust Maturity Model. https://aka.ms/zerotrust

11. Kolla, S. (2021). Zero trust security models for databases: Strengthening defences in

hybrid and remote environments. International Journal of Computer Engineering and

Technology, 12(1), 91–104. https://doi.org/10.34218/IJCET_12_01_009

12. Sharma, A., & Tanwar, S. (2020). Multi-cloud security challenges and future directions: A

review. IEEE Access, 8, 196670–196695. https://doi.org/10.1109/ACCESS.2020.3033844

13. Jain, P., & Singhal, M. (2021). Performance analysis of microservices using service mesh

architecture. Journal of Systems and Software, 179, 111000.

https://doi.org/10.1016/j.jss.2021.111000

14. Shastri, S., & Fei, M. (2021). Securing APIs in microservice environments: A review of

techniques and tools. ACM Computing Surveys, 54(4), 1–36. https://doi.org/10.1145/3439725

15. Hashmi, B., & Sood, A. K. (2020). Multi-cloud architecture and security mechanisms: An

overview. Journal of Cloud Computing, 9(1), 25. https://doi.org/10.1186/s13677-020-00184-z

16. OpenAPI Initiative. (2021). OpenAPI Specification v3.0.3. https://swagger.io/specification/

http://www.ijbar.org/
https://doi.org/10.1109/COMST.2019.2910811
https://docs.aws.amazon.com/apigateway
https://doi.org/10.1109/MSEC.2020.2993479
https://aka.ms/zerotrust

www.ijbar.org
ISSN 2249-3352 (P) 2278-0505 (E)

Cosmos Impact Factor-5.86

Index in Cosmos

MAY 2025, Volume 15, ISSUE 2

UGC Approved Journal

Page | 1766

17. OpenTelemetry. (2021). OpenTelemetry Project Overview. https://opentelemetry.io

18. Google Cloud Platform. (2021). Cloud Logging and Monitoring Integration Guide.

https://cloud.google.com/logging

19. Vangavolu, S. V. (2021). Continuous Integration and Deployment Strategies for MEAN Stack

Applications. International Journal on Recent and Innovation Trends in Computing and

Communication, 9(10), 53-57. https://ijritcc.org/index.php/ijritcc/article/view/11527/8841

http://www.ijbar.org/
https://opentelemetry.io/
https://cloud.google.com/logging

